Hypoxia induces autophagy of bone marrow-derived mesenchymal stem cells via activation of ERK1/2.

نویسندگان

  • Junfang Wu
  • Jie Niu
  • Xiaopeng Li
  • Yonghai Li
  • Xianwei Wang
  • Juntang Lin
  • Fenxi Zhang
چکیده

BACKGROUND Bone marrow-derived mesenchymal stem cells (bmMSCs) are the most promising seed cells for cell transplant therapy. Hypoxia is a known stimulus of autophagy. Recent studies showed that hypoxia promotes autophagy of human placental chorionic plate-derived mesenchymal stem cells (CP-MSCs). However, whether hypoxia affects autophagy of bmMSCs has not been examined. The goal of this study was to investigate the effect of hypoxia on autophagy of mouse bmMSCs and the underlying mechanisms. METHODS BmMSCs from mouse bone marrow were randomly divided into three groups: control (C), hypoxia (H) and hypoxia + reoxygenation (H+R) groups. Subsequent autophagic signals were analyzed by immunostaining and Western blot assays. RESULTS The expression of autophagic signals LC-3, Atg5 and Beclin-1, as well as the conversion of LC3B-I to LC3B-II in bmMSCs were significantly increased in H group as compared with control (p<0.05). These autophagic signals were also higher in H+R group than in H group (p<0.05). Also, the expression of phospho-ERK1/2 was significantly increased in H and H+R groups as compared with control (p<0.05). Notably, application of ERK1/2 inhibitor U0126 (5μM) significantly repressed hypoxia-induced expression of LC-3 and Atg5, as well as conversion of LC3B-I to LC3B-II (p<0.05). CONCLUSION Hypoxia can induce autophagy of bmMSCs, which depends on activation of ERK1/2 pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autophagy-Modulated Human Bone Marrow-Derived Mesenchymal Stem Cells Accelerate Liver Restoration in Mouse Models of Acute Liver Failure

Background: Mesenchymal stem cells (MSCs) have been recently received increasing attention for cell-based therapy, especially in regenerative medicine. However, the low survival rate of these cells restricts their therapeutic applications. It is hypothesized that autophagy might play an important role in cellular homeostasis and survival. This study aims to investigate the regenerative potentia...

متن کامل

Effect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture

Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...

متن کامل

The effect of aquatic activity and alogenic bone marrow derived mesenchymal stem cells fortified with Platelet-Rich Plasma in treatment of Achilles tendon in rat

The aim of this study was to the effect of aquatic activity and alogenic bone marrow derived mesenchymal stem cells fortified with Platelet-Rich Plasma in treatment of Achilles tendon in rat.  74 Sprague-Dawley rats were selected and tendon injury was formed in 69 of them. Subsequently, these rats were randomly divided into 8 groups and 5 rats which were without any injuries were chosen as the ...

متن کامل

Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells

Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...

متن کامل

Comparative analysis of the Gene expression profile of Chemokine Receptors between Adipose-derived and Bone marrow-derived Mesenchymal Stem Cells

Introduction: Mesenchymal stem cells (MSCs) hold great promise in the field of regenerative medicine.Although originally isolated from bone marrow, MSCs have since been obtained from a variety of adult and neonatal tissues including the adipose tissue. Stemness and multipotential features of Mesenchymal Stem Cells (MSC) has been highlighted in many studies but there are many dark aspects in ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 33 5  شماره 

صفحات  -

تاریخ انتشار 2014